
  

Abstract— Chrome is a fundamental commodity in our everyday 

life, i.e. chromium is used in turbine engines, catalyst preparation, 

transportation and more. Conventional beneficiation thereof can be 

divided into comminution and concentration. The downfall to 

conventional beneficiation, however, entails the low efficiency of the 

concentration section for particle sizes inferior to 75 µm. This 

inefficiency builds up to a loss of approximately 25 % of valuable 

materials as fines in the tailings. Alternative methods, such as the Wet 

High-Intensity Magnetic Separator (WHIMS), were consequently 

invented for further beneficiation of these tailings. This paper details 

an investigation into the capabilities of an artificial neural network 

(ANN) to predict the cleaner stage WHIMS output by employing the 

Levenberg-Marquardt (LM) algorithm. Both multi-input-multi-output 

(MIMO) and multi-input-single-output (MISO) networks were 

employed and the topology of each optimized. The combined 

performance of the MISOs proved more accurate than the MIMO 

network predicting with overall errors of 0.6 % mean absolute error 

(MAE) and 0.07 root mean square error (RMSE). However, taking the 

mean absolute percentage error (MAPE) and the coefficient of 

multiple determination (R2) into account, the MIMO network 

outperformed the combined MISOs, predicting with a MAPE of 3 % 

with a correlation of 0.993. 
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I. INTRODUCTION 

Chrome is a fundamental mineral product that is not easily 

replaceable in a variety of applications [1]. During conventional 

beneficiation thereof, approximately 25 % of valuable material 

is lost as fines in the tailings [2]. A piece of beneficiation 

equipment invented with the purpose of further beneficiating 

such tailings is the WHIMS. On account of three interacting 

forces, i.e. magnetic, gravitational and inter particulate forces, 

slurry can either exit a WHIMS as a tailing (non-magnetic 

material), a middling or a mag (magnetic material) [3]. The 

WHIMS utilizes an induced gravitational field that captures 

magnetic material in matrices while washing off non-magnetic 

material. The magnetic material is hereafter washed off at the 

point where the magnetic field does not have an influence on 

the particle anymore.  
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The measurable cleaner stage input variables include wash 

water flow rate, feed flow rate, slurry density, magnetic 

intensity, particle size, feed chrome percentage and feed 

chrome to iron ratio. The efficiency of the WHIMS will be 

defined by (i) product grade, (ii) recovery and (iii) yield.  

An ANN is used to predict these outputs, due to its tailored 

capability to recognize patterns that other linear fitting curves 

will not be able to model accurately [4]. Specifically to the 

extraction of chromite ore, past experiments done by Reichel 

[5] presented results that showed that ANNs are preferred above 

mechanistic and statistical methods to predict the outputs based 

on prediction accuracy. ANNs do not predict outcomes by 

means of physical coding, but rather by learning characteristics 

of the data as a result of a pattern recognition process called 

training [6]. 

The typically used ANN is the fully connected, feed-forward 

layered network undergoing supervised training [7]. This type 

of architecture is utilized in this study. Conventional and robust 

algorithms include the backpropagation, Levenberg-Marquardt 

and scaled conjugate algorithms, with the backpropagation 

method by far the most commonly used algorithm [8]. The 

Levenberg-Marquardt algorithm was chosen due to its ability to 

converge quickly and in a stable manner as well as the 

suitability in the use of a small data set [9]. 

To validate the network, different performance 

measurements can be used, however, for networks with 

relatively smooth data and for the purpose of pattern 

recognition, it is advised to use RMSE and MAE performance 

measurements [10].  

Each network’s topology plays a cardinal role in the behavior 

of the network itself [6]. Numerous factors need to be taken into 

account when optimizing the topology, i.e. the number of 

hidden layers and the number of hidden neurons per hidden 

layer [11]. General rules of thumb exist that estimate the 

number of hidden neurons [12], however, additional methods to 

determine the optimum number of hidden neurons include 

Hopfield’s neural network and Akaike’s information criterion 

[11]. Plant data can also be used to validate the network’s 

performance. Furthermore, when comparing MIMO and MISO 

networks, MISO networks generally outperform MIMO 

networks, as confirmed by Chang et al. [13].  
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II. EXPERIMENTAL METHOD 

TABLE I: A LIST OF MATERIALS AND EQUIPMENT USED. 

Materials Equipment 

Raw chromite ore  Containers 

Water Drying oven 

Filter paper Oven pans 

WHIMS rougher product Filter press 

 Laboratory scale 

 Industrial scale 

 Two-way splitter 

 Ten-way splitter 

 WHIMS pilot plant 

 Sieves and shaker 

 Collection drums 

 

Materials and equipment necessary to complete these 

experiments are listed in Table I. A pilot plant WHIMS with 

model number RW9301 102 manufactured in Australia was 

used to execute the experiments. In order to construct a 

supervised learning ANN, both input and output values need to 

be obtained. To quantify some of the inputs, some preparation 

prior to the operation of the WHIMS was required. Similar 

experimental steps are carried out on the product to obtain 

output values. 

A. Sample Preparation 

Raw material was received in the form of a slurry from two 

plants situated around Rustenburg. The first step was to leave 

the sample to settle in order to decant as much water as possible. 

A period of two hours dedicated to settling has proven to be 

sufficient for solid-liquid separation to take place.  

The following step entailed drying of the solid material. The 

solids were dried in an oven at a temperature of 130 ℃ for a 

period of 24 hours. For the WHIMS operation, a minimum 

amount of 10 kg of solid material is required to obtain credible 

results. Consequently, the total weight of the dried material was 

split into batches with a mass slightly higher than 10 kg by using 

the two-way splitter multiple times.  

Subsequent steps entailed determination of the particle size 

distribution (PSD) and x-ray fluorescence (XRF) analysis of the 

feed to obtain the feed particle size, chrome to iron ratio and 

chrome percentage. Since the bulk is now split into multiple 

batches with each batch representative of the bulk, material 

with a mass within the range of 2-3 kg was taken from one of 

the batches to the ten-way splitter to deliver a sample with a 

mass of 200-300 g. Only one of the ten parts was necessary to 

conduct the remainder of the sample preparation steps and the 

rest was added back into the batch it was taken from. 

The 200-300 g sample needed to undergo separation based 

on particle sizes. Multiple sieves were used in the arrangement 

detailed in Table II. Water was used at a low flow rate for each 

individual sieve to aid the solid separation.  

Due to fact that the previous step was conducted on a wet 

basis, the material needed to be dried before the material on 

each sieve could be weighed to produce the PSD. The material 

is again dried at 130 °C in the drying oven, however, 3 hours 

should be ample. Once the material was dry, the mass on each  

TABLE II: A LIST OF SIEVES USED TOGETHER WITH THE SIEVE SIZES. 

Sieve number Sieve size (µm) 

1 850 

2 600 

3 500 

4 300 

5 212 

6 150 

7 106 

8 75 

9 53 

10 38 

 

sieve was obtained, noted and separately stored to undergo XRF 

analysis. All the information required to construct a PSD and 

calculate the d50 (diameter at which 50 % of the material will 

pass through) was now known. The d50 was used to represent 

the particle size of the bulk sample. The material weighed and 

stored was subsequently sent for XRF analysis. 

B. Operating the WHIMS 

A baseline for the operating conditions of the WHIMS is 

provided in Table III. Step changes in each variable are 

implemented in order to investigate the effect of each variable 

on the WHIMS’ operation.  
TABLE III: WHIMS OPERATING CONDITIONS BASELINE. 

Variable Baseline Unit 

Wash water flow rate (single stage) 10 𝑙/min 

Wash water flow rate (double 

stage) 

0 𝑙/min 

Feed water flow rate 7.3 𝑙/min 

Magnetic flux 13.5 A 

Feed density 30 % solids 

(wt %) 

 

Before the WHIMS operation could commence, a few things 

needed to be verified. A 2200 𝑙 tank was used to add sufficient 

water necessary during the WHIMS test. The level thereof 

needs to be verified. In addition, the amount of water needed to 

produce a slurry containing the mass of the test batch needed to 

be calculated to deliver the desired density for the run.  

The rotor was started and the wash water flow rate was 

adjusted to the desired value prior to the run.  

Next, the magnetic flux was set to the desired value and the 

product and tailings outlet pipes were inserted into separate 

bins. Hereafter, the slurries were made up to the desired feed 

density and added to the circulation section of the WHIMS. To 

ensure that the slurry was thoroughly mixed, the slurry was 

circulated for approximately 5 min.  

After these steps have been completed, the WHIMS test can 

commence. The magnet was switched on and the wash water 

feed valve opened. The desired number of feed pipes were 

transferred into the hopper feeding the WHIMS. Once the 

circulation section containing the slurry was almost empty, 

water was added to flush the system.  

The product analysis is similar to steps carried out for sample 

preparation. The chrome percentage in the product needs to be 
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determined to calculate the grade, recovery (Rec) and yield with 

(1) [5], (2) [14] and (3) [14] with 𝑚𝑓𝑒𝑒𝑑  and 𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 referring 

to the mass of the feed (kg) and mass of product (kg) 

respectively. Furthermore, 𝐶𝑟%𝑝𝑟𝑜𝑑𝑢𝑐𝑡  and 𝐶𝑟%𝑓𝑒𝑒𝑑  refer to 

the chrome percentage within the product and the feed 

respectively. 

 
𝐺𝑟𝑎𝑑𝑒 =

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝐶𝑟%𝑝𝑟𝑜𝑑𝑢𝑐𝑡)

𝑚𝑓𝑒𝑒𝑑
× 100 (1) 

 
𝑅𝑒𝑐 =

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝐶𝑟%𝑝𝑟𝑜𝑑𝑢𝑐𝑡)

𝑚𝑓𝑒𝑒𝑑(𝐶𝑟%𝑓𝑒𝑒𝑑)
× 100 (2) 

 𝑌𝑖𝑒𝑙𝑑 =
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑚𝑓𝑒𝑒𝑑
× 100 (3) 

C. Repeatability 

The repeatability of the experiments carried out on the 

WHIMS machinery can be presented by calculating the 

standard deviation from the mean obtained by repeated 

experiments. A run with 13.18 kg of solids and 60 kg of water 

making up a feed that is fed at 58 𝑙/min with magnetic flux of 

11 kG and 15 𝑙/min wash water flow rate were carried out seven 

times. The mass of the product produced each time were 

measured and the standard deviation from the mean was 

calculated with the use of (4)-(7) [15]. Here, 𝜇  refers to the 

mean value of the data, 𝑁𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 the number of duplicates, 

𝑆𝐸𝑖 the squared error of the 𝑖th run, 𝜎 the standard deviation and 

𝜎𝑚𝑒𝑎𝑛 the standard deviation from the mean obtained. 

 
𝜇 =

Σ 𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑁𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠
 (4) 

 
𝑆𝐸𝑖 = (𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖

− 𝜇)
2

 (5) 

 

𝜎 = √
Σ 𝑆𝐸𝑖

𝑁𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 − 1
 (6) 

 𝜎𝑚𝑒𝑎𝑛 =
𝜎

√𝑁𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠

  (7) 

D. Outliers 

To remove any possible outliers within input and output data, 

a simple calculation yielding the upper and lower bounds was 

done with the use of (8)-(10) [53]. 𝑄3 and 𝑄1 refers to the upper 

(75%) quartile and lower (25%) quartile of the data 

respectively. Furthermore, 𝐼𝑄𝑅  refers to the inter quartile 

range. Any value obtained from the experiments higher than the 

upper bound or lower than the lower bound was regarded as an 

outlier and discarded.  

 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (8) 

 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 × 𝐼𝑄𝑅 (9) 

 𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = = 𝑄3 + 1.5 × 𝐼𝑄𝑅 (10) 

III. MODEL DEVELOPMENT AND NETWORK OPTIMIZATION 

A. Model Development 

The first objective is to construct a code that can create an 

ANN with specific characteristics. The input and output data 

used in this code is obtained from experiments. 

Multiple programs can be utilized to construct an ANN [16]. 

In this case, MATLAB R2017b was used. Each ANN consists 

of a fully connected feedforward layered network topology with 

one hidden layer, using the Levenberg-Marquardt learning 

algorithm. All of the networks required desired output values 

and were therefore considered to be supervised learning 

networks [11]. After the network has been trained with the 

training data set, the network’s topology needed to be optimized 

as the effectiveness of the ANN lies within its topology [6].  

B. Network Optimization 

When constructing an ANN, there are five factors that need 

to be considered and/or determined. These factors include: (i) 

selecting the number of hidden layers, (ii) determining the 

number of hidden neurons in each hidden layer, (iii) find an 

optimal solution with the aim of avoiding local minima, (iv) 

take convergence time constraints into account and (v) 

validation of network on account of overtraining [11]. 

1. Selecting Number of Hidden Layers 

The choice of the number of hidden layers can be made by 

investigating the characteristics of the data. Panchal et al. [11] 

explained that one hidden layer is enough for conventional 

problems and that the additional second layer rarely improves 

the network’s performance. A second hidden layer should 

however be added when dealing with data containing 

discontinuities [11]. 

2. Determining Number of Hidden Neurons 

As an initial estimation of the number of hidden neurons 

(𝑁ℎ) , rules of thumb based on number of inputs (𝑛𝑖𝑛)  and 

outputs (𝑛𝑜𝑢𝑡) as given in (11)-(14) can be used [11], [12]. 

However, this is a mere starting point. The optimum number of 

hidden neurons can be determined with different selection 

approaches, including: (i) a simple method, (ii) Hopfield neural 

network or (iii) Akaike’s Information Criterion (AIC) [11].  

 𝑁ℎ = 𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡 − 0.5 (11) 

 𝑛𝑜𝑢𝑡 < 𝑁ℎ < 𝑛𝑖𝑛 (12) 

 
𝑁ℎ =

2

3
𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡 (13) 

 𝑁ℎ < 2𝑛𝑖𝑛 (14) 

(i) Simple method: The configuration for a backpropagation 

method can be denoted as l-m-n, with l referring to the number 

of input neurons, m the number of hidden neurons and n the 

number of output neurons. Here m is chosen to be smaller than 

the number of input neurons but larger than the number of 

output neurons [11]. 

(ii) Derived from the Hopfield neural network: The Hopfield 

network is one of the simplest neural networks consisting of an 

input, output and single hidden layer with a fully connected 

neuron structure. It dictates that the number of hidden neurons 

can be set equal to the number of input neurons [11]. 

(iii) Akaike’s Information Criterion (AIC): The AIC is a 

criterion based on entropy concepts that provides a 

measurement of the goodness of the statistical model. It 

describes the trade-off between bias and variance. The ANNs 

with different number of hidden neurons, can be ranked 

according to their AIC, with the lowest AIC indicating the best 

17th JOHANNESBURG Int'l Conference on Science, Engineering, Technology & Waste Management (SETWM-19) Nov. 18-19, 2019 Johannesburg (S.A.)

https://doi.org/10.17758/EARES8.EAP1119293 187



configuration. The formula to calculate the AIC is given in (15) 

[11]. 

 𝐴𝐼𝐶 = −2 × ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 × 𝑘 (15) 

Where 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 refers to maximum log likelihood of the 

model and 𝑘  refers to the number of free parameters in the 

model. Additionally, AIC can also be calculated with (16) [17], 

where 𝑛 is the number of data points.  

 
𝐴𝐼𝐶 = 𝑛 × ln (

𝑆𝑆𝐸

𝑛
) + 2 × 𝑘 (16) 

After the AIC has been calculated, the credibility of how 

good each network approximates actual data should be 

quantified. The first step to quantify this is to calculate how far 

each network’s AIC is from the minimum obtained AIC as seen 

in (17) [11]. 

 ∆𝑖 = 𝐴𝐼𝐶𝑖 − min(𝐴𝐼𝐶𝑖)  (17) 

Next, an estimation of the likelihood of the model can be 

obtained with (18) [11]. 

 𝐿(𝑚𝑜𝑑𝑒𝑙)  ∝  exp(−0.5∆𝑖) (18) 

For optimal interpretation of the likelihood estimation, the 

values obtained in (18) should be normalized with the use of 

(19). This is called the Akaike’s weight (𝐴𝑊𝑖) of each model 

[11]. 

 
𝐴𝑊𝑖 =

exp(−0.5∆𝑖)

∑ exp(−0.5∆𝑖)
𝑛
𝑖=1

 (19) 

The candidate models can now be filtered out by the general 

rule of thumb (see (20)) stating that any model with an Akaike 

weight greater than 10 % of the largest weight is plausible to be 

a candidate model [11]. 

 0.1 × max(𝐴𝑊𝑖) < 𝐶𝑎𝑛𝑑 𝑚𝑜𝑑𝑒𝑙𝑠 (20) 

The AIC will be considered as the determining factor when 

deciding on the optimum number of hidden neurons.  

3. Finding an Optimal Solution with the Aim of Avoiding 

Local Minima 

Conventional ANN architectures contain a feed forward 

network using a backpropagation algorithm, which is also the 

case in this study. However, the downfall of the 

backpropagation algorithm is that it may sometimes move to a 

local minimum and not the overall (global) minimum [18].  

To overcome this occurrence, numerous studies have been 

conducted to propose solutions [18]. The widest used method is 

merely to iteratively train the network with initial random 

weights [19]. This, however, can be time consuming. In a paper 

authored by Atajulreka and Sutivong [18], the use of Resilient 

Backpropagation method, which is more time efficient, yet very 

effective, is detailed.  

To simplify things, the rules of thumb are used to obtain an 

upper and a lower boundary for the number of hidden neurons 

applicable to this study. AIC results are also to be obtained 

within these limits, otherwise the limits are extended 

accordingly. Hereafter the network is trained 10 times for each 

number of hidden neurons until a greater certainty exists that 

the backpropagation algorithm focused on the global minima 

and not the local minima.  

4. Convergence Time Constraints 

In certain cases, the time the network takes to converge can 

play a cardinal role in the choice of number of hidden neurons 

[39]. This network, however, comprises of very little data and 

convergence takes place in under a second for a network 

containing 100 hidden neurons, which therefore eliminates the 

need to account for a time constraint.  

5. Validation of Network on Account of Overtraining 

When validating an ANN, the correct error measurement 

should be chosen. A clear-cut theoretical approach to validate a 

neural network unfortunately does not exist, however, four 

conventionally used performance measures include the MAE, 

MAPE, RMSE and mean square error (MSE). Specifically, for 

networks containing smooth output vectors and for the purpose 

of pattern classification, the MAE and RMSE are usually used 

to validate the network’s performance [10]. The MAPE, 

together with the coefficient of multiple determination (R2), is 

used to assess the performance of the networks. 

When training neural networks, it is a challenge to stop the 

training just before overfitting occurs and the network starts to 

lose its generalization abilities, yet leaving enough room for the 

training to learn the data set properly [20]. One approach to 

avoid overtraining is to investigate the number of epochs. It is 

treated as a hyperparameter while training the network multiple 

times, where-after an epoch is chosen that produces the best 

performance [10]. 

Another approach is called early stopping, where the 

generalization error of the network is continuously being 

calculated and the training is stopped when this error starts to 

increase [10]. Fortunately, this method is already accounted for 

when using MATLABTM to construct supervised feedforward 

neural networks [21]. 

IV. RESULTS AND DISCUSSIONS 

A. Repeatability and Outliers 

The WHIMS operation was repeated 7 times and presented a 

75 g standard deviation from the mean when using 73.18 kg 

feed (slurry). The WHIMS therefore showed an acceptable 

repeatability. Furthermore, all the data were tested for outliers 

and none of the data points were found to be above or below the 

upper and lower bounds.  

B. MIMO Networks 

Due to the data being of a continuous nature, 1 hidden layer was 

used.  

The general rules of thumb, together with the simple method 

and Hopfield’s neural network results, are given in Table IV. 

An overall range of 3 to 14 hidden neurons was obtained.  

The minimum AIC resulted in a value of -399.2 using 9 

hidden neurons. On account of the rule of thumb given in (20), 

this network was the only viable candidate. 

Furthermore, performance measurements MAPE and R2 are 

investigated within the range of 3 to 14 neurons. With 9 hidden 

neurons, the AIC will be at its minimum, which also delivers a 

3 % MAPE and 0.993 correlation. However, when only taking 

the MAPE together with the R2 values into consideration, 11 

hidden neurons displays the best performance. As mentioned, 

the AIC is chosen to be the deciding factor with regards to the  

optimum number of hidden neurons. Therefore, the MIMO 
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TABLE IV: RESULTS FOR THE NUMBER OF HIDDEN NEURONS ESTIMATED.  

Rule of 

thumb 

Minimum 

number of 

hidden 

neurons 

Fixed number 

of hidden 

neurons 

Maximum 

number of 

hidden 

neurons 

1  10  

2 3  7 

3  8  

4   14 

Simple 

method 

3  7 

Hopfield  7  

 

network with 7 inputs, 9 hidden neurons and 3 output neurons 

is regarded as the optimum network structure according to AIC. 

Hereafter, local minima is tested. After iteratively training 

the network each time with randomized weights, the smallest 

AIC obtained remains -399.2 with the use of 9 hidden neurons. 

It can therefore be stated with greater certainty that the 

minimum originally found represents a global minimum.  

Taking local minima into account, the optimum MIMO 

network, therefore, contains 1 input layer with 7 neurons, 1 

hidden layer with 9 hidden neurons and 1 output layer with 3 

neurons. The performance of this network can be seen in Fig. 1. 

This network presents an overall performance of 3 % MAPE 

with an R2 of 0.993. The grade prediction is more accurate than 

the predictions for recovery and yield. This could be on account 

of less variance found in grade data.  

C. MISO Networks 

Three different types of MISO networks were constructed. 

All seven inputs were used in each MISO to investigate the 

effect that each has on grade, recovery and yield individually. 

Similar to MIMO networks, the data remains to be of a 

continuous nature as it is the same data used. Therefore, 1 

hidden layer was used for all the MISO networks.  

The general rules of thumb, together with the use of the 

simple method and Hopfield’s neural network, resulted in an 

overall range of 1 to 14 hidden neurons. The minimum AIC 

value for the yield, recovery and grade output MISOs resulted 

in values of -235 with 14 hidden neurons, -549 with 5 hidden 

 

 
Fig. 1. Fit of optimum MIMO neural network with actual experimental 

output data. 

 

TABLE V: OPTIMUM NUMBER OF HIDDEN NEURONS BASED ON PERFORMANCE 

MEASUREMENTS FOR ALL MISO NETWORKS. 

Performance 

measurement 

MAPE 

(%) 

R2 Number of 

hidden neurons 

Yield    

Minimum MAPE 2 0.951 2 

Maximum R2 4 0.986 9 

Recovery    

Minimum MAPE 1 0.983 4 

Maximum R2 4 0.998 19 

Grade    

Minimum MAPE 1 0.980 4 

Maximum R2 3 0.997 15 

 

neurons and -216 with 21 hidden neurons respectively. These 

networks were the only viable candidates. The optimum 

number of hidden neurons based on the MAPE and R2 

performance measurements are given in Table V. 

Similar to the MIMO network, each MISO was trained 10 

times, starting each time with random weights for neurons 1 to 

21 to ensure that the values obtained are not representative of 

local minima. The hidden neuron range is extended to 

investigate up until 21 neurons on account of the optimal AIC 

found at 21 for the grade network. The minimum AICs obtained 

after iteratively training the networks are -502.5, -520 and -405 

for the yield, recovery and grade networks respectively. 

Comparing these values to the values initially obtained. both the 

yield and the grade networks obtained smaller AICs at 6 and 8 

hidden neurons. This can be an indication that the grade and 

yield networks initially converged to local minima. In 

conclusion, the optimal network structures for each MISO can 

now be given with greater certainty as 6, 5 and 8 hidden neurons 

for the yield, recovery and grade neural networks respectively. 

Each network’s performance is presented in Table VI. The 

performance graphs are shown in Fig. 2. 

 
TABLE VI: PERFORMANCES OF EACH OPTIMUM MISO NETWORK. 

Output MAPE (%) R2 

Yield 3 0.971 

Recovery 5 0.952 

Grade 3 0.981 

 

 
Fig. 2. Fit of optimum MISO networks to experimental data. 
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TABLE VII: COMPARISON OF PERFORMANCE MEASUREMENTS MIMO 

NETWORKS WITH MISO NETWORKS. 

Output MAE  

(%) 

RMSE MAPE 

(%) 

R2 

M S M S M S M S 

Yield  0.1 0.1 0.03 0.02  3  0.97 

Recovery  0.4 0.3 0.03 0.05  5  0.95 

Grade  0.5 0.2 0.01 0.004  3  0.98 

Overall 1.0 0.6 0.07 0.07 3 3.7 0.99 0.97 

 

A. Comparison Between MIMO and MISO Networks 

The optimum MIMO and MISO network performances are  

presented in Table VII. When considering MAE and RMSE, the 

MISO networks primarily outperforms the MIMO, confirming 

findings from literature [13]. However, when considering the 

MAPE and R2 values, the MIMO network perform better than 

the combined performance of the MISO networks.  

V. VALIDATION OF NETWORK TOPOLOGY WITH PLANT 

DATA 

In order to inspect the validity of the chosen network and its 

topology, three months’ plant data was used as input and output 

values. The combined MAPE for the MIMO and MISO 

networks were 10 % and 4 % respectively. The MIMO and 

MISO obtained an R2 of 0.97 and 0.79 respectively.  

VI. CONCLUSIONS AND RECOMMENDATIONS 

The findings correspond with work done by Reichel [7] that 

showed the suitability of an ANN to model the rougher phase 

of a WHIMS. It is also fit to use an ANN to model the cleaner 

phase of the WHIMS as it models experimental data with 

overall errors of 0.2 % MAE, 0.02 RMSE and 3.7 % MAPE 

while displaying a correlation of 0.97 when using MISO 

networks. MISO neural networks are deemed optimum between 

MIMO and MISO networks considering performance criteria 

MAE and RMSE. Contrastingly, the MIMO network slightly 

outperformed the MISOs when taking the MAPE and 𝑅2 into 

consideration. Optimum number of hidden neurons for the 

MISO networks are 6, 5 and 8 hidden neurons for yield, 

recovery and grade respectively, while the MIMO network 

performed optimally with 9 hidden neurons.  

Some recommendations to improve on the accuracy of the 

model are (i) to obtain a larger dataset to allow training to take 

place with more data points, (ii) a more in depth study to ensure 

that all possible local minima are avoided and (iii) to combine 

the performance measurements with the AIC results to make a 

decision regarding the optimum number of hidden neurons 
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